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Abstract
Evidence-based elections aim to produce trustworthy and

compelling evidence of the correctness of election outcomes,
enabling the detection of problems with high probability. They
require a well-curated voter-verified paper trail, compliance
audits, and a rigorous tabulation audit of the election outcome,
known as a risk-limiting audit (RLA).

This paper focuses on ballot polling RLAs which can re-
quire that a very large sample of ballots be drawn. The main
ballot polling RLA in use today, BRAVO, is designed for
use when single ballots are drawn at random and a decision
regarding whether to stop the audit or draw another ballot is
taken after each ballot draw. But in practice, ballot polling
audits draw many ballots in a single round before determining
whether to stop.

Direct application of BRAVO to large rounds results in con-
siderable inefficiency. We present MINERVA, a risk-limiting
audit that addresses this problem. When compared to the
BRAVO stopping rule being applied at the end of the round,
for a first-round with 90% stopping probability, MINERVA
halves the number of ballots required across all state margins
in the 2020 US Presidential election. When compared to the
BRAVO stopping rule being applied after examination of in-
dividual ballots, MINERVA reduces the number of ballots by
about a quarter. MINERVA requires that round sizes are prede-
termined; this does not appear to be a drawback for large first
rounds which have been typical choices for election officials.

Ballot-polling audits are the leading option in most states.
MINERVA significantly reduces the necessary expense for
contests with close margins and thus makes adopting RLAs
easier. Wider adoption of RLAs is a critical step in increasing
public confidence in elections.

MINERVA was used in Ohio’s pilot RLA of the primaries in
May 2020 in Montgomery County. We provide open-source
implementations of MINERVA. The code has been integrated
as an option in Arlo, the most widely-used RLA software.
∗filip.zagorski@votifica.com, Author was partially supported by Polish

National Science Centre contract number DEC-2013/09/D/ST6/03927
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1 Introduction

The goal of the Help America Vote Act (HAVA) passed by
the United States Congress in 2002 was to improve voting
systems, but it led to the large-scale deployment of insecure
electronic voting systems [2–4]. Additionally, no matter how
well-developed a voting system, it is not possible to be cer-
tain of its output in all instances. Best practices hence should
include software independent [16] voting systems (those in
which an undetected error in the software does not result in
an undetectable error in the election outcome) and evidence-
based elections [21], in which the voting system provides
not only the tally, but also evidence that the outcome is cor-
rect, and in which the evidence is examined by the public to
determine whether the outcome is correct.

The more recent trend is a return to paper-based systems,
albeit with ongoing voter verification weaknesses in some
quarters [1]. Voter-verified paper records, combined with se-
cure curation of the paper trail and compliance and voter
registration audits provide an independent record of voter
intent and convert almost any voting system into a system
that is evidence-based. One need not perform a full manual
recount of the independent record of voter intent to verify the
election outcome. Risk Limiting Audits (RLA), as described
by Lindeman and Stark [8], provide a rigorous approach to
confirming the election outcome through the sampling of a
subset of the ballots. A report from the National Academy of
Sciences [13] and the Voluntary Voting Systems Guidelines
(VVSG, version 2.0) [22] strongly support the use of RLAs.

Significant effort has been invested by policy advocacy
organizations—such as Verified Voting, the Brennan Center,
Common Cause, Democracy Fund and others—to educate
election officials about RLAs and help them carry out pilots
and statutory audits, as well as develop legislation. Non-profit
VotingWorks has often been a partner, providing both open-
source audit software (Arlo) and training in its use. As a
consequence of these efforts, three states (Colorado, Rhode
Island and Virginia) have RLAs in statute; four have a statu-
tory pilot program (Georgia, Indiana, Kentucky, and Nevada,
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where RLAs will be a requirement in 2022); four allow RLAs
to satisfy a more general audit requirement (California, Ohio,
Oregon and Washington); and two have an administrative
pilot program (Michigan and New Jersey).

Of the different types of RLAs, the ballot polling RLA
requires only minimal information—the tally and an inde-
pendent ballot manifest describing the organization of ballot
storage. For close contests, however, a large number of ballots
need to be drawn at random, requiring considerable effort
on the part of election officials. These are early times in the
adoption of RLAs, and difficulties could scuttle these efforts.
It is hence in the interests of election security that unnecessary
inefficiencies be rectified.

We describe the MINERVA ballot polling RLA, which con-
siderably reduces the workload when compared to BRAVO,
the most common ballot polling audit. We show that MIN-
ERVA is an RLA if the round schedule is pre-determined.

1.1 Election Tabulation Audits

An election tabulation audit may be viewed as a binary hy-
pothesis test, where the null hypothesis is that the election
outcome is incorrect, and the alternative hypothesis is that
it is correct. An audit is defined as risk-limiting to risk limit
α if its Type I error is at most α, whatever the (unknown)
true underlying vote distribution is. That is, given that the
tabulated outcome is incorrect, the probability that the audit
does not recognize it as such is at most α.

The most popular example of election tabulation ballot
polling audits is the BRAVO [9] audit, which is a most efficient
audit when the audit software is queried (regarding whether
to stop the audit or draw more ballots) after each ballot draw,
and the stopping condition is satisfied exactly when the audit
is stopped. The term most efficient refers here, as elsewhere, to
an audit requiring the smallest expected number of ballots if
the election is drawn from the assumed prior. The expectation
is taken over the randomness of the ballot draws.

In real election audits, multiple ballots are drawn in a round
before a decision is taken. This paper shows that BRAVO is
not a most efficient test in this case and proposes the more ef-
ficient risk-limiting test MINERVA, demonstrating significant
decreases in first-round sizes, or lower Type I errors for the
same number of ballots. For example, consider a ballot polling
RLA of the 2020 Presidential contest in the state of Michigan.
Election officials generally prefer a high probability of being
done in a single round. If the audit applied the BRAVO rule at
the end of the round, the first round size for a 90% probability
of completion is 18,161 (measured in the expected number of
distinct ballots). The corresponding round size for MINERVA
is 8,807. Additionally, if the audit is not completed in the first
round, the MINERVA Type 1 error measure is always smaller
than the BRAVO measure for the same sample.

To reduce the expected BRAVO sample size, auditors can
apply some additional bookkeeping effort so the BRAVO rule

can be applied to each ballot in random selection order after
the ballots are drawn in a round. With this approach, the
first round size for a 90% probability of completion with
BRAVO would drop to 12,293, still almost 40% larger than
the MINERVA round size.

1.2 The Problem
We refer to audits where decisions are taken after each bal-
lot draw as ballot-by-ballot or B2 audits. The general audit,
however, is a round-by-round or R2 audit where, in the jth

round, some ballots are drawn, after which a decision is taken
regarding whether to (a) stop the audit and declare the election
outcome correct, (b) stop the audit and go to a full manual re-
count, or (c) draw the ( j+1)th round. A B2 audit is a special
case of the R2 audit, when a single ballot is drawn in each
round.

There are two ways to apply B2 audit rules to an R2 audit.
Let n be the number of ballots drawn at any time. Let n j be
the total number of ballots drawn after the jth round, of which
k j are for the reported winner. Hereafter, when we refer to the
“winner” we typically mean the “reported winner”; we refer
to the “true winner” when necessary.

• End-of-round: In this application, the B2 stopping rule
for k j winner ballots in a sample of n j ballots determines
whether the audit will stop.

• Selection-ordered-ballots: In this application, the inter-
pretation of each ballot is associated with the ballot id,
so the B2 stopping condition can be tested ∀n≤ n j. The
audit stops if the B2 condition is satisfied for any value
of n≤ n j.

Selection-ordered-ballots is generally more efficient than end-
of-round as a means of applying B2 rules to R2 audits, but
requires the significant additional effort of preserving enough
information to be able to recreate the subtotals of winner
ballots in selection order. End-of-round relies only on the
tallies and does not require selection order. As our paper
shows, neither is a most efficient R2 stopping rule.

1.3 Our Contributions
Our contributions are as follows:

1) We derive analytical expressions for the risk and proba-
bility of stopping, given the history of rounds and the election
margin for the BRAVO stopping rule. For rounds drawing
single ballots each, we verify that our expressions predict the
stopping percentiles of BRAVO simulations as reported by
Lindeman et al. [9, Table 1]. The code for computing these
expressions is available as a MATLAB library, released as
open-source under the MIT License [23].

2) We present the MINERVA audit (or stopping rule) and
prove that it is risk-limiting and at least as efficient as the cor-
responding end-of-round BRAVO stopping rule, and, relatedly,

3060    30th USENIX Security Symposium USENIX Association



that MINERVA provides a risk limit that is never larger than
the one for end-of-round BRAVO.

Note that our current proof for the MINERVA properties
assumes that the audit uses a predetermined schedule of round
sizes, independent of what samples are drawn in earlier round
sizes. Because BRAVO is designed for use with rounds of
size one, a BRAVO audit need not pre-commit to round sizes.
Because it appears that election officials prefer not to go back
for another round, and our efficiency gains are considerable
for high stopping probabilities in the first round, MINERVA
is useful in spite of this constraint. For example, one could
choose the second round size for MINERVA to correspond to
the total number of ballots to be drawn by BRAVO in its first
round, and one would see that MINERVA is virtually certain
to stop by then if the required stopping probability in the first
round is large enough.

3) We provide experimental results and software to support
the use of MINERVA:

• To illustrate the efficiency improvements, we compute
(without simulations, using the derived analytical expres-
sions), for each state in the 2020 US Presidential election,
risk limit α = 0.1 and a stopping probability of 0.9, first
round sizes for end-of-round BRAVO and MINERVA. We
find that end-of-round BRAVO requires about twice the
number of ballots, across all margins.

• We compute first round sizes for selection-ordered-
ballots BRAVO and find that it requires about 25−39.5%
more ballots for the data of the 2020 US Presidential elec-
tion, with the improvement due to MINERVA being better
for smaller margins. Thus MINERVA is more efficient
than selection-ordered-ballots BRAVO and does not re-
quire the additional bookkeeping of recording selection
ballot order.

• Our code for the audits is available as MATLAB and
Python libraries [12,23,28]. All code is released as open
source under the MIT license. The Python code for the
MINERVA audit was used for an RLA pilot in Mont-
gomery County, Ohio in May 2020. The Python library
has been integrated as an option into Arlo, the most pop-
ular election audit software that has been used to run a
large number of RLAs [25].

Advocacy groups continue to work towards policies support-
ing or requiring RLAs, and efficiency improvements will im-
pact their adoption and progress towards evidence-based elec-
tions.

For those implementing audits, we note that, depending on
the margin and the voting technology used, ballot comparison
or batch comparison audits could be more desirable RLAs.
One may also consider combinations of ballot comparison
and ballot polling audits, such as described in [14].

4) The class of R2 stopping rules is a class of B2 rules
when round size is one. Of theoretical interest, we prove that

B2 MINERVA (round size one) has the same stopping rule as
B2 BRAVO. We do not claim that MINERVA is a most efficient
R2 audit; the problem of finding the most efficient R2 audits
is open.

1.4 Organization
Section 2 presents the model and related work. Section 3
motivates the problem with an example demonstrating that the
application of B2 rules to an R2 audit results in inefficiencies.
Section 4 introduces the MINERVA audit with examples and
provides insight into why the audits are risk-limiting and more
efficient than either R2 application of B2 BRAVO. Section
5 presents rigorous claims of MINERVA’s risk-limiting and
efficiency properties. Section 6 presents applications of our
results, and Section 7 describes the use of MINERVA in a
pilot RLA of the primaries in Montgomery County, Ohio in
May 2020. Section 8 concludes. Some proofs and some more
experimental results are in the Appendix.

2 Background

There are three main categories of risk-limiting audits. Each
requires that the voting system produce a tally, and that admin-
istrators provide a ballot manifest, independent of the voting
system, which details the physical storage organization of the
ballots so that specific ballots may be identified (for example,
“the fifth ballot in Batch 100”). Each has some distinguishing
traits:

1. Ballot polling audits: Ballots are drawn at random and a
decision of whether to stop the audit or not is based on
the sample drawn. No additional data is required.

2. Batch comparison audits: The ballots are organized in
batches, such that each ballot belongs to exactly one
batch. Batches are chosen at random and the manual
tally of all ballots in a chosen batch is compared to the
batch tally announced by the voting system. The results
of the comparisons determine whether to stop the audit or
draw another batch/batches. This type of audit requires
the voting system to provide tallies for each batch. It
thus requires more granular detail about the tally than
does a ballot polling audit.

3. Ballot comparison audits: Individual ballots are chosen
at random and the physical ballot is compared to the cast
vote record (CVR), which is the electronic representation
of the ballot choices as interpreted by the voting system.
The collection of CVRs uniquely determines the tally.
The results of the comparisons provide the basis for
the stopping decision. This type of audit requires the
voting system to provide a CVR for each ballot. It thus
requires more granular detail about the tally than do the
ballot polling audit and the batch comparison audit. It is
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the most efficient of all three audits in terms of number
of ballots drawn, but many voting systems either don’t
produce CVRs, or make them too difficult to match up
with the corresponding paper ballots.

The comparison audits may provide greater satisfaction to
election officials and the public because each comparison pro-
vides a measure of how close the system came to achieving
the goal of a correct election. But batch comparison audits can
require more setup and work than a ballot polling audit, espe-
cially when batches are large. Ballot comparison audits are
not always feasible. For these reasons, ballot polling audits
are the most common and have been used in a number of state
pilots (California, Georgia, Indiana, Michigan, Ohio, Pennsyl-
vania and elsewhere). The main challenge in implementing
ballot polling audits is the very large number of ballots that
need to be drawn in close contests; Θ( 1

m2 ) for margin m. Note
that the multiplying constant for the audit does matter in this
scenario; a factor of two improvement, for example, can re-
duce by nearly half the number of person days required to
complete a large audit. This is particularly useful when the
number of ballots to be drawn is in the tens of thousands,
such as would have been the case for ballot polling RLAs
with risk limit 0.1 in Georgia, Arizona, Wisconsin, Pennsyl-
vania, North Carolina, Nevada, Michigan and Florida in the
2020 Presidential contest (see Table 1).

2.1 The Model

We consider a plurality contest and assume ballots are drawn
with replacement. We assume all ballots have a vote for ei-
ther the winner or the loser; because ballots are sampled with
replacement, our argument is easily extended to contests with
multiple candidates and invalid ballots (as for BRAVO, for
example, see [8]). We denote by w the true winner, wa the an-
nounced winner, `a the announced loser and p the announced
fractional tally for wa (typically based on preliminary, uncer-
tified results).

A polling audit will estimate whether wa is the true win-
ner. We denote by n j the total number of ballots drawn at
the end of the jth round, and by k j the corresponding total
number of ballots for the winner. Hence the number of new
ballots drawn in round j is n j−n j−1, and the number of new
votes for the winner drawn in round j is k j − k j−1. If nec-
essary, one may assume that n0,k0 = 0. We often refer to
[n1,n2, . . . ,n j, . . .] as the round schedule. A B2 audit is an R2
audit with round size n j = j. That is, the round schedule of a
B2 audit is [1,2, . . . , j, . . .].

The total number of ballots drawn at any time during the
audit is denoted n (if the number of rounds drawn so far is
j, n = n j). The random variable representing the number of
ballots drawn so far for the winner is represented by K. We use
k∗, k∗ and k̃ to represent specific numbers of winner ballots
as well.

The entire sample drawn up to the jth round, in sequence,
forms the signal or the observation; the corresponding random
variable is denoted X j, the specific value x j. The entire sample
drawn so far is denoted X , its specific value x. We do not a
priori assume a last round for the audit. The audit stops when
it satisfies the stopping condition.

We model the audit as a binary hypothesis test:

Null hypothesis H0: The election outcome is the closest
possible incorrect outcome: w 6= wa and the fractional vote
count for wa is 1

2 . In particular, if the total number of valid
votes is even, the election is a tie. If the total number of
valid votes is odd, the margin is one in favor of `a. In this
case, we assume that the number of valid votes is large
enough that the fractional vote count is sufficiently close to 1

2 .
Henceforth, we will refer to both cases as being represented
by a fractional vote count of 1

2 .

Alternate hypothesis Ha: The election outcome is correct:
w = wa and the fractional vote count is as announced.

After each round the test A takes X as input and outputs
one of the following:

• Correct: The test estimates that w = wa and the audit
should stop.

• Incorrect: The test estimates that w 6= wa. We stop draw-
ing votes and proceed to perform a complete hand count
to determine w.

• Undetermined (draw more samples): We need to draw
more ballots to improve the estimate.

When the audit stops, it can make one of two kinds of
errors:

1. Miss: A miss occurs when w 6= wa but the audit misses
this, and outputs Correct. We denote by PM the probabil-
ity of a miss:

PM = Pr[A(X) = Correct | H0]

PM is the risk in risk limiting audits and the Type I error
of the test.

2. Unnecessary Hand Count: Similarly, if w = wa, but the
audit estimates that a hand count must follow, the hand
count is unnecessary. We denote the probability of an
unnecessary hand count by PU :

PU = Pr[A(X) = Incorrect | Ha]

PU is the Type II error.

Like the BRAVO audit, this paper focuses on tests with
PU = 0. The risk, on the other hand, is an important (generally)
non-zero value characterizing the quality of the audit.
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2.2 Related Work
A risk-limiting audit (RLA) with risk limit α—as described by,
for example, Lindeman and Stark [8]—is one for which the
risk is smaller than α for all possible (unknown) true tallies
in the election. For convenience when we compare audits, we
refer to this audit as an α-RLA.

Definition 1 (Risk Limiting Audit (α-RLA)). An audit A is
a Risk Limiting Audit with risk limit α iff

P[A(X) = Correct | H0]≤ α

There are many audits that would satisfy the α-RLA crite-
rion, and not all would be desirable. For example, the constant
audit which always outputs Incorrect always requires a hand
count and is risk-limiting with PM = 0 < α, ∀α, ∀p. However,
PU = 1, and the audit examines all votes each time; this is
undesirable.

An example of an α-RLA with PU = 0 and drawing fewer
ballots is the B2 BRAVO audit [9] which specifies round size
increments of one.

We use the following notation:

σ(k, p,n),
pk(1− p)n−k

( 1
2 )

n
(1)

Definition 2 (BRAVO). An audit A is the B2 (α, p)-BRAVO
audit iff the following stopping condition is tested at each
ballot draw. If the sample X is of size n and has k ballots for
the winner,

A(S) =

 Correct σ(k, p,n)≥ 1
α

Undetermined else
(2)

Its p-value is σ(k, p,n)−1.

σ(k, p,n) is the likelihood ratio of the drawn sequence X . The
B2 (α, p)-BRAVO audit is an SPRT [26] with:

H0, the null hypothesis: the election is a tie

Ha, the alternate hypothesis: the fractional tally for the
winner is p.

Implicit in Definition 2 is the point that a sequence X is
tested only if it has not previously satisfied the test. If
A(X∗) = Correct for some sequence X∗, all extensions X+

∗
of X∗ are defined as having passed the test. Determining the
stopping condition by evaluating A(X+

∗ ) does not satisfy the
assumptions of the test, and the properties of the test do not
necessarily apply. As we shall see in Section 3, this is relevant
to end-of-round BRAVO. In fact, it is relevant to end-of-round
applications of any B2 audit that is an SPRT.

B2 BRAVO is a most efficient test given the hypotheses
(if, in each instance that the stopping condition is satisfied,

it is satisfied exactly). Vora shows that B2 (α, p)-BRAVO
is an α-RLA because it assumes a tie for H0, which is the
wrong election outcome that is hardest to distinguish from the
announced one, and hence defines the worst-case risk [24].

Other approaches, such as Rivest’s CLIP Audit [15], im-
prove on B2 BRAVO’s efficiency subject to certain constraints
(namely, of β as defined in [15]). More creative approaches,
such as the k-cut method, attempt to reduce the effort made
by election officials in a ballot polling audit [18].

An early prototype of MINERVA mirrored the explicit
risk allocation found in Stark’s Conservative Statistical Post-
Election Audits [20]: before ballots are examined for the audit,
a list of increasing rounds (n1,n2, ...,n j), and a list of corre-
sponding risks (α1,α2, ...,α j) are generated. The early proto-
type solved this problem by exactly computing the risk and
probability distributions (using the convolution as described
in a later section). This led to a fundamental improvement of
MINERVA over BRAVO.

There is a line of work on group sequential testing [5–7,
27] but all results that we were able to find begin with the
assumption of a normal distribution and cannot be directly
applied to the considered scenario of auditing elections.

3 BRAVO Theory vs Practice

In this section we use an example to illustrate the problems
of using B2 rules for an R2 audit.

The B2 (α, p)-BRAVO audit, Definition 2, is the following
ratio test (inequality (2)) performed after each draw:

σ(k, p,n) = pk(1−p)n−k

( 1
2 )

n ≥ 1
α

.

Because p > 1− p and the denominator above does not
depend on k, σ(k, p,n) is monotone increasing with k. There is
hence a minimum value of k for which the B2 (α, p)-BRAVO
stopping condition is satisfied. That is, ∃ kmin(BRAVO,n, p,α)
such that the stopping condition of Definition 2, inequality
(2), is:

A(S) = Correct⇔ k ≥ kmin(BRAVO,n, p,α)

In fact it is easy to see that kmin(BRAVO,n, p,α) is a dis-
cretized straight line as a function of n, with slope and inter-
cept determined by p and α (see, for example, [26]).

kmin(BRAVO,n, p,α)= dm(BRAVO, p,α) ·n+ c(BRAVO, p,α)e
(3)

where

m(BRAVO, p,α) =
log

1
2

1−p

log p
1−p

c(BRAVO, p,α) =− logα

log p
1−p

We drop one or more arguments of kmin, c or m when they are
obvious.
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Example 1 (B2 BRAVO vs R2 BRAVO). Let α = 0.1 and
p = 0.75, we get, from equation (3):

kmin(BRAVO,n,0.75,0.1)≈ d0.6309n+2.0959e (4)

Consider ballots drawn in rounds of size 20,40,60, . . . and
the BRAVO condition being tested:

• End-of-Round, which requires a record simply of the
tally of the sample polled.

• Selection-ordered-ballots, requires a record of the vote
on each ballot polled, in selection order.

Note that the stopping condition is always the BRAVO stop-
ping condition; the variation is in when it is checked.

Figure 1 is a plot of kmin(BRAVO,n,0.75,0.1) as a function
of round size. It also shows the results of the tests above,
performed on an example sequence.

• For a hypothetical sequence, selection-ordered-ballots
BRAVO checks the stopping condition at the blue squares
till the stopping condition is satisfied, and the audit stops.
It has information about the number of ballots for the
winner and the total number of ballots drawn at each
ballot draw.

• If the same sequence were to go through an end-of-round
BRAVO audit, the stopping condition would be checked
only at the end of the round, denoted in the figure by
black crosses. The audit only has information on vote
tallies at the end of the round.

We see that the stopping condition is satisfied during the
second round, at n = 22, but that it is no longer satisfied when
it is tested at the end of that round, at n = 40, or the following
round, n = 60. It is satisfied at the end of the fourth round,
n = 80, which is the number of ballots drawn in an end-of-
round BRAVO audit. Thus:

• B2 BRAVO ends at n = 22, and 22 ballots are drawn.

• End-of-round BRAVO ends at n = 80 and 80 ballots are
drawn.

• Selection-ordered-ballots BRAVO ends at n = 22, and 40
ballots are drawn.

The instance of selection-ordered-ballots BRAVO in our
example would stop at the end of the second round after 40
ballots are drawn, but the information in ballots 23-40 would
be discarded. It ought to be possible to use this information,
obtained at some cost, to better estimate the correctness of the
election outcome. (Imagine telling election officials and the
public that the p-value of the draw was small enough earlier,
that it is not any more, and the math allows us to use the
earlier value because if the election outcome is incorrect, it is
accounted for in the risk limit). We need not be limited by the
B2 BRAVO rules which begin with a large disadvantage when
used for R2 audits, as they do not take into account that the
ballots are drawn in rounds.

Figure 1: Using BRAVO for a round-by-round audit with p =
0.75, α = 0.1 and round size = 20.

4 MINERVA

In this section, we use an example to illustrate the work-
ings of a proposed new R2 audit MINERVA. In later sections,
we prove MINERVA is risk-limiting—if round sizes are pre-
determined—and at least as efficient as end-of-round BRAVO.

4.1 End-of-round BRAVO

Example 2 (End-of-Round (0.1,0.75)-BRAVO). We consider
the end-of-round (0.1,0.75)-BRAVO audit as in the previous
section. Denote by n1 the number of ballots drawn in the first
round and let n1 = 50. Let K1 be the number of votes for the
winner, then K1 lies between 0 and n1 = 50. Figure 2 shows
the probability distributions of K1 for the two hypotheses:

Ha: the election is as announced, with p = 0.75 (blue solid
curve), and

H0: the election is a tie (red dashed curve).

We will continue to refer to Figure 2 in the following ex-
amples and sections, when we will address the shaded areas.

4.2 An Introduction to MINERVA

We propose the MINERVA audit, which uses the tails of the
probability distribution functions to define the stopping con-
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Figure 2: Probability Distribution of Winner Votes for a frac-
tional vote count of p = 0.75 for the winner and a sample
size of n1 = 50: First Round. The solid blue line represents
the distribution if the election tally is as announced. The
dashed red line represents the distribution if the election
is actually a tie, which—among all elections not won by
the announced winner—is the hardest to distinguish from
an election actually won by the announced winner. If the
number of ballots drawn for the winner were k1 = 32, the
horizontal dotted lines mark the values where the vertical
line k1 = 32 crosses the two distributions. These are the
values needed to compute the BRAVO ratio, σ, and corre-
spond to Pr(K1 = 32 | margin = 0.25), which is 0.0264, and
Pr(K1 = 32 |margin = 0), which is 0.0160. The BRAVO ratio
is then σ(32,0.75,50) = 0.0264

0.0160 6≥
1
α
= 10 and the sample does

not pass the end-of-round BRAVO audit in the first round. Re-
call that the B2 BRAVO p-value is the reciprocal of the above
probability ratio. In this example, it is ≈ 0.6061 > α = 0.1,
and the maximum risk is larger than the risk limit. This
is consistent with the fact that (see Example 1, Section 3)
32 < kmin(BRAVO,50,0.75,0.1) = 34.

dition. Here we provide an informal description of the MIN-
ERVA audit.

We denote:

τ1(k, p,n1) =
Pr[K1 ≥ k | Ha,n1]

Pr[K1 ≥ k | H0,n1]
(5)

Example 3 (The MINERVA Audit). For the parameters of
Example 2, α = 0.1, p = 0.75, n1 = 50 and k1 = 32, we de-

scribe the MINERVA stopping condition, a comparison test of
the ratio of the tails of the distributions:

τ1(32, p,n1)≥ 1
α

.
Compare this to the stopping condition for BRAVO, inequal-
ity (2).

Note that Pr[K1 ≥ 32 | Ha] is the stopping probability for
round 1 (the probability that the audit will stop in round 1
given Ha) associated with deciding to stop at K1 = 32—and
not at smaller values. It is the tail of the solid blue curve, the
translucent blue area in Figure 2. Similarly, Pr[K1 = 32 | H0]
is the associated risk. It is the tail of the red dashed curve
denoting the tied election, and shaded red.

For our example, the ratio of the tails of the two curves of
Figure 2 is (the values are not denoted in the figure):
τ1(32,0.75,50) = Pr[K1≥32|Ha,n1]

Pr[K1≥32|H0,n1]
≈ 29.89 > 1

α
= 10.

And the sample passes the MINERVA audit.

We see below that the MINERVA ratio is larger than the
BRAVO ratio for various values of K1 in our example. We
show more rigorously later that the MINERVA ratio is always
no smaller than the BRAVO ratio, and hence that MINERVA is
always at least as efficient as end-of-round BRAVO. We also
show later that the MINERVA test is risk-limiting.

Example 4 (BRAVO vs. MINERVA Ratios). For the param-
eters of Examples 2 and 3: p = 0.75, α = 0.1 and n1 = 50,
Figure 3 presents the likelihood ratio for end-of-round BRAVO
(green solid line), σ(k1,0.75,50), and the tail ratio for MIN-
ERVA (orange dashed line), τ1(k1,0.75,50), on a log scale.
An audit satisfies the stopping condition when its ratio equals
or exceeds α−1 = 10, and we observe in the figure that the
MINERVA audit stops before end-of-round BRAVO.

This is an example of a more general relationship: any
sample satisfying end-of-round BRAVO will also satisfy MIN-
ERVA. In fact, it will often be the case that the MINERVA
condition will be satisfied and that for end-of-round BRAVO
will not. The reason for MINERVA stopping at smaller values
of K1 is as follows.

The MINERVA ratio, τ1, at some K1 = k1 is a weighted
average of all the values of σ(K1,0.75,50) for K1 ≥ k1. Be-
cause σ(K1,0.75,50) is an increasing function of K1, the
weighted average is, generally speaking, larger than the value
of σ(k1,0.75,50), because the larger values of σ(K1,0.75,50)
“make up” for the smaller ones. It is never smaller than
σ(k1,0.75,50). When k1 = n1 is the largest possible num-
ber of winner votes, the two ratios will be equal. Equivalently,
the MINERVA p-value will always be smaller than the BRAVO
one, except when k1 = n1 is the largest possible number of
winner votes, and the p-values are equal. Thus, MINERVA
always stops when end-of-round BRAVO does, and is at least
as efficient.
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Figure 3: BRAVO and MINERVA comparison tests for p =
0.75 and n1 = 50: First Round. The figure above presents
the BRAVO and MINERVA ratios (σ and τ respectively) as a
function of the number of winner ballots for a sample size of
n1 = 50. The orange dashed line, representing the MINERVA
ratio, is above the solid green line representing the BRAVO
ratio. The horizontal line α−1 = 10 marks the value above
which the stopping condition is satisfied; that is, the MINERVA
stopping condition is τ1 ≥ α−1 and the BRAVO stopping con-
dition is σ1 ≥ α−1. We have seen earlier that the kmin value
for BRAVO for these parameters is 34 (see equation (4), Ex-
ample 2), and this is consistent with what we see in the figure:
end-of-round BRAVO stops for K1 ≥ 34 (shaded green area)
and no smaller values of K1. On the other hand, we see from
this figure that MINERVA stops for K1 ≥ 31 (shaded orange
area) and is hence more efficient for this round.

4.3 Computing Risks and Stopping Probabili-
ties for Multiple-Round Audits

In this section we describe how probability distributions may
be computed in multiple round audits with monotone stop-
ping conditions; that is, audits where the stopping condition
is represented through the use of kmin. We use examples to
demonstrate how the probability distributions may be com-
puted for rounds 2 and above.

Example 5 (Testing the Stopping Condition). Consider an
election with p= 0.75 and a risk limit of α= 0.1. Suppose the
first round size is n1 = 50 and the draw results in K1 ballots for
the announced winner. Recall that the kmin value for MINERVA
for these parameters is 31 (see Figure 3, Example 4) and we
assume that K1 < kmin. Thus the sample does not pass the
MINERVA test.

Now suppose we draw 50 more ballots to get n2 = 100
ballots in all, of which K2 are for the winner. We will need to
compute the probability distribution on K2 to determine the

ratio of the tails for the MINERVA stopping condition.
Note that the probability distribution of K2 is not the bi-

nomial distribution for a sample size of 100. In fact, if the
audit did not stop in the first round, K1 < 31 = kmin and
K2≤K1+50, which means that K2 < 81 (even if all 50 ballots
in the second round are for the announced winner).

If the audit continues, the maximum number of ballots
before new ones are drawn is 30. The probability distributions
before the new sample is drawn are as shown in Figure 4, and
may be denoted as:
f (K1 | Ha) = Pr[K1 = k1∧ (AM (X1) 6= Correct)|Ha] and
f (K1 | H0) = Pr[K1 = k1∧ (AM (X1) 6=Correct)|H0].
where AM denotes the MINERVA audit for the given parame-
ters.

Figure 4: Probability Distribution of Winner Ballots for MIN-
ERVA: p = 0.75, n1 = 50: After Testing the Stopping Condi-
tion for the First Round. Going into the second round, the
values of the probability distributions for K1 < kmin are un-
changed, and the probabilities for K1 ≥ kmin are zero, because
the audit would have stopped if K1 ≥ kmin.

The “discarded” tails, in both cases, represent the proba-
bilities that the audit stops. When this is conditional on Ha,
we refer to it as the stopping probability of the round (S1),
large values are good. When it is conditional on H0, it is the
worst-case risk corresponding to the round (R1), large values
are bad. Recall that our stopping condition bounds the worst-
case risk for the round to be no larger than a fraction α of the
stopping probability.

Using the above probability distributions, we can now com-
pute the distribution of ballots for the announced winner in
the sample of size 100, which we obtain after drawing 50
more ballots.
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Example 6 (Second Round Distribution). Continuing with
Example 5, we consider an election with p = 0.75, risk limit
α = 0.1 and round sizes n1 = 50,n2 = 100. We wish to com-
pute the probability distribution for K2, the number of votes
for the announced winner after drawing the second round of
ballots.

There would be a total of K2 winner ballots in the sample
after the second draw if D = K2−K1 winner ballots were
drawn among the 50 new ballots drawn in round 2. D could
be any value between 0 and 50, and its distribution is the
binomial distribution for the draw of size 50.

If we denote the distribution of K2 as g, it is:

g(K2 = k2 | H) =

min{kmin−1,k2}

∑
k1=max{0,k2−50}

f (K1 = k1 | H) ·Bin(k2− k1,50,H)

where Bin( j,n,H) is the probability of drawing j votes for the
announced winner in a sample of size n, when the fractional
vote for the announced winner is 1

2 for H = H0 and p for
H = Ha.

The above expression results in a function gH , obtained by
an operation known as the convolution of the two functions,
and is denoted:

gH = fH ~BinH,50

where ~ represents the convolution operator and H the hy-
pothesis. The convolution of two functions can be computed
efficiently using Fourier Transforms; this result is the convo-
lution theorem.

After drawing the second sample, the probability distribu-
tions for MINERVA are as in Figure 5.

In order to compute probability distributions for the next
round, we would first compute the value of kmin for this round
using the tail ratio, then zero the probability distributions for
the value of kmin and above, and then perform a convolution
with the binomial distribution corresponding to the size of the
next draw. And so on.

Probability distributions for B2 audits may be computed
similarly, with the round schedule: (1,2, . . . , i, . . .). We used
this approach to compute percentiles for the BRAVO stopping
probabilities; see the Appendix for the results.

4.4 The MINERVA audit
In this section we rigorously describe the MINERVA risk-
limiting audit. The stopping condition for BRAVO is a com-
parison test for the ratio of probabilities of the number of
winner ballots. On the other hand, the stopping condition for
the MINERVA test is a comparison test for the ratio of the
complementary cumulative distribution functions (cdfs). For
the MINERVA audit, the stopping condition for a given round
does depend on previous round sizes, which are required to

Figure 5: Probability Distribution of Winner Ballots for MIN-
ERVA: p= 0.75, n1 = 50, n2 = 100: After Drawing the Second
Round. The distributions are generated by the convolution
procedure described. Notice that, if the underlying election
were as announced (solid blue line), a large fraction of the
samples would satisfy the stopping condition, and a small
fraction would proceed to the next round. On the other hand,
if the underlying election is tied (dashed red line), the sample
is far less likely to satisfy the stopping condition and many
audits would proceed to the next round.

compute the complementary cdfs, but not on future round
sizes. Our proofs for its risk-limiting property assume that the
rounds are pre-determined.
Given the B2 (α, p)-BRAVO test we define the corresponding
R2 MINERVA test by its stopping condition, which is a com-
parison test of the ratio of the complementary cdfs of samples
that did not satisfy the stopping condition for any previous
round.

Definition 3 ((α, p,(n1,n2, . . . ,n j, . . .))-MINERVA). Given
B2 (α, p)-BRAVO and round sizes n1,n2, . . . ,n j . . ., the cor-
responding R2 MINERVA stopping rule for the jth round is:

A(X j) =

 Correct τ j(k j, p,(n1, . . . ,n j),α)≥ 1
α

Undetermined else
(6)

where τ j is the complementary cumulative distribution ratio
for the jth round, for j ≥ 2:

τ j(k j, p,(n1, . . . ,n j),α) =

Pr[K j ≥ k j ∧∀i< j(A(Xi) 6=Correct) | Ha,n1, . . . ,n j]

Pr[K j ≥ k j ∧∀i< j(A(Xi) 6=Correct) | H0,n1, . . . ,n j]

(7)

and, as with B2 (α, p)-BRAVO, Ha, the alternate hypothesis,
is that the fractional tally for the winner is p.
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Clearly, for j = 1 and the first round,

τ1(k1, p,n1) =
Pr[K1 ≥ k1 | Ha,n1]

Pr[K1 ≥ k1 | H0,n1]
.

5 MINERVA properties

In this section, we present properties of MINERVA, formu-
lated as theorems. The proofs of technical lemmas are in the
Appendix. We begin with notation, then show that MINERVA
is risk-limiting and that its B2 version stops exactly when the
B2 version of BRAVO does. Finally, we show that MINERVA
is at least as efficient as end-of-round BRAVO. Before each
theorem and proof we provide an informal explanation of the
result.

5.1 Notation and Definitions
First, we establish some shorthand notation which will be
useful. For ease of notation, when the audit and its parameters
(round schedule, risk limit, fractional vote for the winner) are
fixed, we denote:

S j(k j),Pr[K j ≥ k j∧∀i< j(A(Xi) 6=Correct) |Ha,n1, . . . ,n j]

R j(k j),Pr[K j ≥ k j∧∀i< j(A(Xi) 6=Correct) |H0,n1, . . . ,n j]

Thus S j(k j)

R j(k j)
is the ratio of the complementary cdfs in round

j when the number of winner ballots drawn is K j, and the
sequence did not satisfy the stopping condition in a previous
round.
Similarly,

s j(k j),Pr[K j = k j∧∀i< j(A(Xi) 6=Correct) |Ha,n1, . . . ,n j]

and

r j(k j),Pr[K j = k j∧∀i< j(A(Xi) 6=Correct) |H0,n1, . . . ,n j]

and s j(k j)

r j(k j)
is the likelihood ratio of k j winner ballots in round

j when the sequence did not satisfy the stopping condition in
a previous round.

Note also the following simple observation:

S j(k j) =
n j

∑
k=k j

s j(k), R j(k j) =
n j

∑
k=k j

r j(k) (8)

Recall that, when we do not refer to parameters at all, S j
corresponds to the stopping probability of the jth round and
is not a function of the sample drawn, but of the audit.

Definition 4 (S j). The probability of stopping in the jth round
for audit A is defined as: S j = Pr[(A(X j) = Correct) ∧
∀i< j(A(Xi) 6=Correct) | Ha,n1, . . . ,n j].

Definition 5 (R j). The risk of the jth round of audit A is
defined as: R j = Pr[(A(X j) = Correct) ∧ ∀i< j(A(Xi) 6=
Correct) | H0,n1, . . . ,n j].

5.2 MINERVA is risk-limiting
In this section we show that MINERVA is risk-limiting. The
idea is simple. In the appendix we state and prove lemmas
that show that the BRAVO ratio, σ, is monotone increasing
as a function of k, because of which the stopping condition
σ ≥ α−1 is equivalent to k ≥ kmin for some kmin. We also
show that σ, though defined as the ratio of the pdfs without
any truncation or convolution, is also the ratio of the pdfs
when they are computed assuming previous round sizes and
using convolution, as we described in section 4.3. Using the
above results and mathematical induction, we show that the
MINERVA ratio τ is also monotone increasing with k and can
similarly be represented as k ≥ k′min for some (other) k′min.

The tail at K = k′min of a distribution (whether representing
the election as announced or tied), Pr[K≥ k′min], in a particular
round, is the probability that the corresponding election passes
the test in that round. Thus the MINERVA condition simply
ensures that the risk of a particular round (probability that
the audit stops for the tied election) is α times the stopping
probability (probability that the audit stops for the election as
announced). Summing over all the rounds, because the total
stopping probability cannot be greater than 1, the risk cannot
be greater than α.

Theorem 1. If the round schedule is pre-determined (before
the audit begins), (α,Ha,(n1, . . .))-MINERVA is an α-RLA.

Proof. From Definition 5 and Lemma 1 (formulated and
proved in Appendix A), we have

R j = Pr[K j ≥ kmin, j(MINERVA,(n1, . . .), p,α) | H0,n1, . . . ,n j]

≤ αPr[K j ≥ kmin, j(MINERVA,(n1, . . .), p,α) | Ha,n1, . . . ,n j]

= α ·S j

because kmin, j(MINERVA,(n1, . . .), p,α) satisfies the MIN-
ERVA stopping condition.

Define the total stopping probability of the audit as follows:
S = Pr[(A(X) =Correct) | Ha].

Then,
S = ∑

j
S j ≤ 1 (9)

The risk of the audit is defined as:
R = Pr[(A(X) =Correct) | H0] = ∑ j R j ≤
≤ α ·∑ j S j = α ·S≤ α from Equation (9).

5.3 Properties of B2 version of MINERVA

In this section we study the relationship between B2 BRAVO
and MINERVA with each round consisting of a single bal-
lot draw. We show that samples satisfying the stopping con-
dition of (α, p)-BRAVO, performed ballot-by-ballot, are ex-
actly those satisfying that of the (α,Ha,(1,2,3, . . . , j, . . .))-
MINERVA audit, where Ha is the hypothesis that the winner’s
fractional tally is p. The p-values of the two audits, however,
differ except at their values of kmin.
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This result follows because, when performed ballot-by-
ballot, both audits stop when the number of winner ballots is
the largest possible (otherwise the audit would have stopped
in the previous round because only one ballot was drawn). For
these values, the MINERVA and BRAVO ratios are identical
because the tails consist of a single value.

Theorem 2. The B2 (α, p)-BRAVO audit stops for a sample
of size n j with k j ballots for the winner, if and only if the
(α,Ha,(1,2,3, . . . , j, . . .))-MINERVA audit stops.

Proof. Consider the jth round of the MINERVA audit: the
jth ballot draw. Suppose that, before the jth round is drawn,
and after the stopping condition is tested for the ( j− 1)th

round and the audit stopped if it is satisfied, k is the largest
value of winner ballots possible. It is strictly smaller than
the corresponding kmin, j−1, because the audit has stopped for
all other values. Further, because at most one winner ballot
will be drawn in the jth round, the largest possible number of
winner ballots in the jth round is k+1.

More formally, let the largest value of k j−1
for which s∗j−1(k j−1) 6= 0 be k, where s∗j is as
defined in the proof of Theorem 1. Then k <
kmin, j−1(MINERVA,(n1,n2, . . . ,n j−1, . . .), p,α) by the
definition of kmin, j−1, Theorem 1. Further, the largest value
of k j for which s j(k j) 6= 0 is k+1.

We now show that if the jth round stops at all, it will be for
k j = k+1 and no other values of k j.

We observe that the only way to obtain k + 1 ballots in
the jth round is if the existing number of winner ballots is k
and the new ballot drawn is for the winner. The probability
is s j(k+1) = ps j−1(k). On the other hand, k ballots arise in
the jth round if the existing number is k− 1 and a winner
ballot is drawn, or the existing number is k and the ballot
drawn is not for the winner. Hence s j(k) = (1− p)s j−1(k)+
ps j−1(k− 1). Similarly: r j(k + 1) = 1

2 r j−1(k) and r j(k) =
1
2 r j−1(k)+ 1

2 r j−1(k−1).
If the condition is satisfied by values other than k+1, be-

cause τ is monotone increasing, it is satisfied by k: τ j(k) =
s j(k+1)+s j(k)
r j(k+1)+r j(k)

=
s j−1(k)+ps j−1(k−1)
r j−1(k)+ 1

2 r j−1(k−1)
≥ 1

α
.

Thus τ j(k) is a weighted average of σ(k, p, j− 1) and
p
1
2

σ(k−1, p, j−1) and:
p
1
2

σ(k−1, p, j−1) = (1−p)
1
2

σ(k, p, j−1)

< σ(k, p, j−1) < τ(k, p, j−1)< 1
α

as k < kmin, j−1(MINERVA,(1,2, . . . , j− 1, . . .), p,α). And
hence, τ j(k) does not pass the stopping condition.

Thus, if AM and AB denote the B2 MINERVA and B2
BRAVO audits respectively,

AM(X j) = Correct⇔ τ j(k, p, j)≥ 1
α

⇔ σ(k, p, j)≥ 1
α
⇔ AB(X j) = Correct.

Samples that do satisfy the stopping condition have the
same MINERVA and BRAVO p-values, which are otherwise
not the same.

5.4 Efficiency
In this section we present an efficiency result for MINERVA.
The proof is simple, and an intuition for it was developed
in Example 4, Section 4.2. The ratio τ at a value K = k is
a weighted average of the values of σ for K ≥ k, and σ is
monotonic increasing, thus τ ≥ σ, with equality occurring
when the tail consists of a single value.

Theorem 3. Given sample X of size n j with k j samples
for the winner, AB(X) = Correct ⇒ AM(X) = Correct
where AB denotes the (α, p)-BRAVO test and AM the
(α, p,(n1,n2, . . . ,n j, . . .))-MINERVA.

Proof. For a fixed election and fixed round sizes, each of τ

and ω is a weighted sum of values of σ, which is monotone
increasing, and generally larger than σ. In fact, equality for τ

occurs only when k is the largest possible number of winner
ballots in the round. Thus
σ(k j, p,n j)≥ 1

α
⇒ τ j(k j, p,(n1,n2, . . . ,n j, . . .))≥ 1

α

and ω j(k j, p,(n1,n2, . . . ,n j, . . .))≥ 1
α

.

From Theorem 3 it follows that MINERVA is at least as
efficient as the corresponding end-of-round application of B2
rules. In Section 6 we demonstrate that MINERVA can be
considerably more efficient.

6 Applications

In this section we describe applications of our results. The
Appendix contains more verification, and provides some more
detail on our work.

Table 1 presents our estimates for the number of distinct
ballots in first round sizes for both end-of-round BRAVO and
MINERVA. These values are computed for 90% stopping prob-
ability and a risk limit of 0.1, for the announced statewide
results of the 2020 US Presidential election, as obtained from
the MIT Election Data and Science Lab [10], for selected
states. We constructed a table of stopping probability as a
function of round size for a given margin, where the stopping
probability of a round is the tail corresponding to the kmin
value for that round size. We used this to compute an esti-
mate of the round sizes in expected number of distinct ballots
drawn, see Appendix Section 2 for details.

It is noteworthy that, across all margins, end-of-round
BRAVO first round sizes are about twice those of MINERVA:
the mean value of the ratio of end-of-round BRAVO sizes to
MINERVA sizes is 1.9604, and the median is 1.9964. Table
5 in the Appendix presents these round size estimates for all
states.

We also estimate first round sizes for 90% stopping proba-
bility for selection-ordered-ballots BRAVO by treating it as a
multiple-round audit. Our results are presented in Table 5 in
the Appendix. We notice that among the three types of audits,
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MINERVA requires the fewest number of ballots and end of
round BRAVO the largest, for every state.

For the comparison with selection-ordered-ballots BRAVO
we currently omit estimates for states with margins smaller
than 0.025. In the other states, we observe that the increase
in round size on using selection-ordered-ballots BRAVO over
MINERVA is 25%− 39.5%, with greater improvements for
smaller margins. The median value of the ratio of selection-
ordered-ballots BRAVO sizes to Minerva sizes is 1.3507 and
the mean is 1.3387. Recall that, unlike selection-ordered-
ballots BRAVO, MINERVA does not require that the ballots be
noted in selection order; sample tallies are sufficient. Thus the
reduction in effort due to both—the reduction in total number
of ballots, and no longer needing to note ballots in selection
order—is considerable.

State Margin EoR BRAVO MINERVA

Ballots Ballots

Arizona 0.0031 1,196,732 640,652

Colorado 0.1388 774 384

District of Columbia 0.8893 14 8

Florida 0.0339 12,530 6,070

Michigan 0.0283 18,161 8,807

Nevada 0.0245 24,311 11,783

North Carolina 0.0137 76,857 37,303

Pennsylvania 0.0118 103,559 50,092

Texas 0.0566 4,520 2,221

Table 1: Comparison of end-of-round (EoR) BRAVO and MIN-
ERVA First-Round Sizes (in distinct ballots) for Statewide
2020 US Presidential Contests, for a stopping probability of
0.9, for selected states.

Of course, some of these sizes are too large for consider-
ation in a real audit. For example, the effort associated with
drawing the fraction 0.2170 of ballots for a MINERVA ballot
polling audit in Georgia would likely be much larger than
that of counting all the ballots, and the effort for both BRAVO
audits would be even larger.

Figure 6 plots the end-of-round BRAVO and selection-
ordered-ballots BRAVO round sizes as a fraction of the cor-
responding MINERVA round size. There is a small variation
with margin, with the fraction being larger for smaller mar-
gins. Note that a couple of states with the smallest margins
do not have the largest ratios for end-of-round BRAVO. For
these states, the ratios of random draws are among the largest,
but the number of random draws for end-of-round BRAVO are
such a large fraction of the total that considering distinct bal-
lots instead of random draws changes the ratio. For example,
in Georgia, MINERVA requires that the number of random
draws be 0.2446 of the total, and end-of-round BRAVO re-
quires 0.5086, for a ratio of 2.08. Considering distinct ballots

draws reduces the ratio to 1.84.

Figure 6: Ratios: MINERVA first-round sizes in expected num-
ber of distinct ballots drawn for 90% stopping probability as
a fraction of those of End-of-Round BRAVO and Selection-
Ordered-Ballots BRAVO, for the statewide margins of the
2020 US Presidential contest.

7 Montgomery County OH audit

MINERVA was used by Mark Lindeman of Verified Voting
for a pilot audit of the 2020 primary elections in Montgomery
County, Ohio. There were a number of contests on the bal-
lot [11], of which three were audited: the Democratic Presi-
dential primary (10 candidates), the Democratic County Com-
missioner FTC 1-2-2021 (2 candidates) and the Republican
County Commissioner FTC 1-2-2021 (2 candidates). Ballots
were not stored separately based on party, but the contests
were, by definition, partisan. A total of 69,743 ballots were
cast.

We estimate the number of ballots for the first round, for
a given probability of stopping, for the closest contest—that
for the Republican County Commissioner FTC 1-2-2021. It
had 15691 votes for Candidate Setzer and 8538 for Candidate
Scearce. All ballots in the sample that do not bear a vote
for either of the candidates are ignored. The relevant margin
is thus (15691-8538)/(15691+8538) ≈ 0.2952, which yields
an estimate of 79 ballots to be picked for a 90% stopping
probability. We scale that up by a factor of 2.88 to account
for the fact that only one in 2.88 ballots is relevant for this
contest, yielding an estimate of 228. For the actual audit, 240
ballots were selected for the first round for convenience. Table
2 presents the predicted round sizes for stopping probabilities
of 0.7, 0.8 and 0.9.
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Audit Round Sizes α = α = Final

0.7 0.8 0.9 0.1 0.05 p-value

MINERVA 150 179 228 89 94 0.0019

SB 176 231 326 92 101 0.0022

EoR 251 340 475 92 101 0.0034

Table 2: Performance of MINERVA, selection-ordered-ballots
BRAVO (SB) and end-of-round BRAVO (EoR) on the data
from the audit of the 2020 primaries of Montgomery County,
Ohio, for the County Commissioner, FTC 1-2-2021 (R) con-
test, with a margin of 0.2952. Estimated round sizes for var-
ious stopping probabilities for α = 0.1 are noted, as are the
smallest sizes of the actual sample that would have been suf-
ficient in this audit for α = 0.1 and α = 0.05. Also noted
are the final p-values. Observe that estimated round sizes are
smallest for MINERVA, the MINERVA audit would have ended
earliest, and the MINERVA p-value is smallest, as expected.

A ballot manifest was prepared, which assigns to each
ballot a unique identifier based on where it is stored (the
100th ballot in the 5th box, for example). A 20-digit random
number from dice rolls was fed in to Arlo’s implementation
of consistent sampling [17], yielding an ordered sample of
240 ballot ids, unpredictable in advance. The ballot ids were
sorted by box and id, and the sample ballots were pulled and
manually examined. The votes on each ballot were recorded
on tally sheets. The sample tallies for Setzer and Scearce were
49 and 20, yielding a MINERVA p-value of 0.0019, which was
below the risk limit. The other contests also met their risk
limits, so the audit could end, having achieved its goal. It was
a relatively lucky draw. Both other methods also met the risk
limit, but only MINERVA could predict success (assuming
accurate results) with 90% probability.

In order to illustrate how each audit would work with dif-
ferent round sizes, we retrospectively used the tally sheet data
and the original selection ordering to calculate the risk lev-
els that would have been computed by MINERVA, selection-
ordered BRAVO (SB) and end-of-round BRAVO (EoR) for
round sizes 1 through 240. That is also how we calculated the
minimum number of draws at which the audit would achieve
the risk limit given the actual roll of the dice, as shown in
Table 2.

We have plotted the p-value as a function of number of
ballots drawn, for this particular sample of ballots. Figure 7
shows the p-values as a function of number of ballots for the
three audits.

The close-up of the corresponding plot for the County Com-
missioner, FTC 1-2-2021 (D) contest, with a margin of 0.3833,
in Figure 8, further illustrates the variation in p-values.

We see that MINERVA provides an advantage in this in-
stance as well, see Table 3.

Figure 7: p-values for MINERVA, End-of-Round BRAVO
(EoR) and Selection-Ordered-Ballots BRAVO (SB), as a func-
tion of the number of ballots drawn for the audit of County
Commissioner, FTC 1-2-2021 (R) contest in the 2020 pri-
maries in Montgomery County, Ohio. Notice that MINERVA
has the lowest p-value except for a few values around 125 bal-
lots, and that EoR always has the largest p-value, as expected.
Recall that the SB p-value is, by definition, the smallest p-
value of all ballot draws so far. Notice that it, hence, does not
increase. Also notice that there are many instances when the
p-values do not change, because the next ballot picked was
not voted for either candidate in the closest pair.

8 Conclusion

We describe inefficiencies with the use of audits developed
for ballot-by-ballot decisions in round-to-round procedures,
such as are in use in real audits today. We propose a new
audit, MINERVA, which we prove is risk-limiting if the round
sizes are pre-determined, and at least as efficient as audits
that apply the ballot-by-ballot decision rules at the end of the
round.
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Figure 8: p-values for MINERVA, End-of-Round BRAVO
(EoR) and Selection-Ordered-Ballots BRAVO (SB), as a func-
tion of the number of ballots drawn for the audit of County
Commissioner, FTC 1-2-2021 (D) contest in the 2020 pri-
maries in Montgomery County, Ohio. Notice that MINERVA
p-value is not always the smallest, and that EoR p-value is
always largest. Observe that the SB p-value takes on the value
0.1 for the first time after the MINERVA p-value goes below
0.05 for the first time.

We describe an approach to computing stopping proba-
bilities and risks of audits with stopping conditions that are
monotone increasing with the number of ballots for the win-
ner in the sample. We demonstrate its accuracy in reproducing
the empirically-obtained percentile values from [9, Table 1]:
the average absolute fractional discrepancy is just 0.13%.

We predict first round sizes (for 90% stopping probability)
for representative states in the US Presidential election of
2020 for end-of-round BRAVO and MINERVA. We find that
our proposed audits require half the ballots for the commonly-
used 90% stopping probability across all margins. We simi-
larly compare first round sizes to selection-ordered-ballots
BRAVO as well, finding that it requires 25%-39.5% more
ballots than does MINERVA, with the larger improvements

Audit Round Sizes α = α = Final

0.7 0.8 0.9 0.1 0.05 p-value

MINERVA 68 76 101 29 72 0.00089

SB 70 93 129 74 87 0.00016

EoR 99 129 188 74 87 0.0146

Table 3: Performance of MINERVA, SB and EoR on the data
from the audit of the 2020 primaries of Montgomery County,
Ohio, for the County Commissioner, FTC 1-2-2021 (D) con-
test, with a margin of 0.3833. Estimated round sizes for var-
ious stopping probabilities for α = 0.1 are noted, as are the
smallest sizes of the sample that would have been sufficient in
this audit for α = 0.1 and α = 0.05. Also noted are the final
p-values. Observe that estimated round sizes are smallest for
MINERVA and that the MINERVA audit would have ended
earliest. The final MINERVA p-value is larger than the SB
p-value, as would be expected to happen on occasion.

corresponding to smaller margins. We thus see that the ad-
ditional effort of retaining information by ballot id, required
by selection-ordered-ballots BRAVO, is not beneficial as the
MINERVA class of audits does not require it.

MINERVA was used in May 2020 for a pilot RLA of the
primaries in Montgomery County, Ohio.

We provide open-source software for computing probabil-
ity distributions and for the MINERVA audit, hoping it helps
developers of election auditing software. We also hope our
work, including the code integrated as an option into the most
popular election audit software package Arlo, helps more
election officials implement more audits, more efficiently.
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A Proofs

In this section we state interesting properties of the MINERVA
ratio.

The B2 (α, p)-BRAVO stopping condition is a test of the
ratio σ(k, p,n). The history of round size is completely cap-
tured in the total number of ballots drawn, n, the ratio tested
is monotone increasing with k, and hence the test is a compar-
ison test for k. We show that σ(k, p,n) is also the likelihood
ratio of winner ballots in all rounds of the MINERVA audit,
even though round sizes are not constrained in any way. Addi-
tionally, we show that the ratio tested for the MINERVA audit
are also monotone increasing, and hence that the tests are also
comparison tests for k.

Lemma 1. For the (α, p,(n1,n2, . . . ,n j, . . .))-MINERVA test,
the following are true for j = 1,2,3, . . .

1.
s j(k j)

r j(k j)
= σ(k j, p,n j)

when r j(k j) and s j(k j) are defined and non-zero.

2. τ j(k j, p,(n1,n2, . . . ,n j),α) is monotone increasing as a
function of k j.

3. ∃kmin, j(MINERVA,(n1,n2, . . . ,n j, . . .), p,α) such that

A(X j) =Correct

⇔ k j ≥ kmin, j(MINERVA,(n1,n2, . . . ,n j, . . .), p,α)

We need the following general results from basic algebra.

Lemma 2. Given a monotone increasing sequence:
a1
b1
, a2

b2
, . . . , an

bn
, for ai,bi > 0, the sequence: zi =

∑
n
j=i a j

∑
n
j=i b j

is also
monotone increasing.

Proof. Note that zi is a weighted average of the values of
a j
b j

for j ≥ i: zi = ∑
n
j=i y j

a j
b j

for y j =
b j

∑
n
j=i b j

> 0. Further,

∑
n
j=i y j = 1 and hence y j ≤ 1 and y j = 1 ⇔ i = j = n.

Observe that, because ai
bi

is monotone increasing, zi ≥ ai
bi

with equality if and only if i = n. Suppose i < n. Then
zi+1 ≥ ai+1

bi+1
> ai

bi
, and zi = yi

ai
bi
+ (1− yi)zi+1 < zi+1. Thus

zi is also monotone increasing.

Lemma 3. Given a strictly monotone increasing sequence:
x1,x2, . . .xn and some constant A, ∃imin such that xi ≥ A⇔
i≥ imin.

Proof. Clear.

Lemma 4. Given p,n, with p > 1
2 , σ(k, p,n) is strictly mono-

tone increasing as a function of k.

Proof. p > 1
2 ⇒ p > 1− p⇒ 1−p

p < 1. Let 0≤ k < n. Then:

σ(k, p,n) = 1−p
p σ(k+1, p,n)< σ(k+1, p,n).

Now, we are ready to prove Lemma 1.

Proof. We show this by induction.
Consider j = 1.

1. s1(k1)
r1(k1)

= Pr[K1=k1|Ha,n1]
Pr[K1=k1|H0,n1]

= σ(k1, p,n1).

2. τ1(k1, p,n1) = Pr[K1≥k1|Ha,n1]
Pr[K1≥k1|H0,n1]

= S1(k1)
R1(k1)

=
∑

kmax,1
k=k1

s1(k)

∑
n
kmax,1

r1(k)
,

where kmax, j is the largest possible value for k j. Note
that kmax,1 = n1. τ1(k1, p,n1) is a weighted average of
σ(k, p,n1) for k≥ k1, and, by Lemmas 2 and 4, is strictly
monotone increasing as a function of k1.

3. From Lemma 3,∃kmin,1(MINERVA,(n1, . . . ,nr, . . .), p,α)
such that τ1(k1, p,n1) ≥ 1

α
⇔ k1 ≥

kmin,1(MINERVA,(n1,n2, . . . ,nr, . . .), p,α), which
is the Minerva stopping condition.

Thus the theorem is true for j = 1.
Suppose the theorem is true for j = m. We will show it is

true for j = m+1.
From property (3) of this theorem for j = m, we

observe that, after the stopping decision is made
and before the next round is drawn, the number of
winner ballots in the sample is strictly smaller than
kmin,m(MINERVA,(n1,n2, . . . ,nm, . . .), p,α). The distribution
on the winner votes may be modeled as s∗m(km) and r∗m(km)
where:

s∗m(km) =

 sm(km) k < kmin,m(MINERVA,n, p,α)

0 else

where, for space reasons, kmin,m(MINERVA,n, p,α) represents
kmin,m(MINERVA,(n1,n2, . . . ,nr, . . .), p,α) and

r∗m(km) =

 rm(km) k < kmin,m(MINERVA,n, 1
2 ,α)

0 else

When we draw the next round of ballots with replacement,
the resulting distributions on the winner ballots are convo-
lutions: sm+1 = s∗m ~ Bin(p,nm+1 − nm) and rm+1 = r∗m ~
Bin(0.5,nm+1 − nm), where Bin(p,n) represents the bino-
mial distribution for winner ballots in a sample of size n
from a distribution with fractional tally p for the winner.
Using property (1) of this theorem for j = m, we see that
s∗m(km) = A(km)pkm(1− p)nm−km and r∗m(km) = A(km)(

1
2 )

nm

for some A, a function of km, current and previous round sizes,
p and α.

Some bookkeeping demonstrates that

sm+1(km+1) = B(km+1)pkm+1(1− p)nm+1−km+1

where B(km+1) = A(km) ~
(nm+1−nm

knew,m+1

)
and rm+1(km+1) =

B(km+1)(
1
2 )

nm+1 which proves property (1) for j = m + 1.
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Properties (2) and (3) follow for j = m+ 1 by application
of Lemmas 2-4.

Thus the theorem is true for all j ≥ 1.

B Experimental Results

B.1 B2 BRAVO Percentile Verification
In this section, we present analytical results for percentiles
of the BRAVO stopping condition, and compare them with
those reported by Lindeman et al. [9, Table 1]. We find that
the average absolute value of fractional difference is 0.12%.

We used the approach described in Section 4.3 to generate
the probability distributions for B2 BRAVO using various
election margins to see how our estimates compared to those
obtained by Lindeman et al. [9, Table 1]. They used 10,000
simulations.

Table 4 presents our values. Values in parentheses are
from [9, Table 1], where they differ. Also listed in the table
is Average Sample Number (ASN), which is computed using
a standard theoretical estimate (and not using our analytical
expressions, nor simulations). It provides a baseline to com-
pare with the values for the Expected Ballots column. Some
of the difference between our values and those of [9, Table 1]
is likely due to rounding off. Further, we notice that both our
values and those of [9, Table 1], when they differ from ASN,
are lower than ASN. In our case, the difference is likely due to
the fact that we compute our probability distributions for only
up to 6ASN draws, using a finite summation to estimate the
probability distributions, and we model the discrete character
of the problem, which is not captured by ASN. The largest
difference between our values and those of [9, Table 1] is 190
ballots, corresponding to a fractional difference of 0.41 %, in
the estimate of the expected number of ballots drawn for a
margin of 1%. Our value is further from ASN. The average
of the absolute value of the fractional difference between our
results and those of [9] is 0.13%. The differences between our
values and those obtained with simulations could be because
10,000 simulations may not be sufficiently accurate at the
lower margins, where most of the errors are. It could also be
because our finite summation is not sufficient at low margin.

B.2 Determining First Round Sizes
For selection-ordered BRAVO we use the approach described
in Section 4.3 to compute probability distributions for margins
0.025 and above and to find the required number of ballots
for the given percentile.

For both end-of-round BRAVO and MINERVA we con-
structed a table of stopping probability as a function of round
size for a given margin, where the stopping probability of
a round is the tail corresponding to the kmin value for that
round size. We observed that the stopping probability is not a

Margin 25th 50th 75th 90th 99th Expected Ballots ASN

0.4 12 22 38 60 131 29.48 30.03

(30)

0.3 23 38 66 108 236 52.85 53.25

(53)

0.2 49 84 149 244 538 118.04 118.88

(119)

0.18 77 131 231 381 842 183.64 184.89

(840) (184)

0.1 193 332 587 974 2,155 466.55 469.26

(2,157) (469)

0.08 301 518 916 1,520 3,366 727.04 730.80

(730)

0.06 531 914 1,621 2,698 5,976 1,287.73 1,294.62

(1,619) (2,700) (5,980) (1,294)

0.04 1,190 2,051 3,637 6,055 13,433 2,887.47 2,901.97

(1,188) (6,053) (13,455) (2,900)

0.02 4,727 8,161 14,493 24,155 53,646 11,506.84 11,561.66

(4,725) (8,157) (14,486) (24,149) (53,640) (11,556)

0.01 18,845 32,566 57,856 96,469 214,385 45,935.85 46,150.44

(18,839) (32,547) (57,838) (96,411) (214,491) (46,126)

Table 4: Computed Estimates of B2 BRAVO Stopping Proba-
bility Percentiles. Values in parentheses are those from [9, Ta-
ble 1] that differ.

monotone increasing function of round size. This is because,
if kmin increases with round size (it does not decrease, but it
may remain the same), the stopping probability may decrease
slightly.

For both end-of-round BRAVO and MINERVA, the round
size with a desired stopping probability increases quadrati-
cally: reciprocal squared of the margin. As auditors require
round size recommendations in real time, a linear search for
such round sizes is intractable for tight races. We present here
a modified binary search used to compute the round size esti-
mates in this paper. A standard binary search is insufficient
because stopping probability is not monotone in round size;
larger draws are occasionally marginally less likely to stop
than smaller draws.

We conduct modified binary searches on graduating inter-
vals to account for the small round sizes needed for most
margins in practice. We emphasize that the difficulty is not
in determining the stopping probability of a given round size
(that is a straightforward tail computation); it is in the inverse
problem.

Ignoring the case when an acceptable round size is less
than the absolute lower bound r0 (which is avoided in practice
by selecting r0 as the lowest possible round size), a round
size produced s by this algorithm satisfies the constraint that
s− 1 does not achieve the desired stopping probability. As
many round sizes achieve a given stopping probability, this
constraint ensures we report a small round size so that auditors
do not examine more ballots than necessary.

Note that SPROB(m) computes the stopping probability of
a given round size.

In all cases, once we determined the number of ballots
required in the contest between the two leading candidates,
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Algorithm 1 Modified Binary Search
Decide on a desired stopping probability p.
Generate an absolute lower bound, r0, for the search.
Generate intermediate upper bounds, r1,r2, . . . ,rn, for graduating
searches.
i,s← 0
while s = 0 and i < n do

s← SEARCH(ri,ri+1)
i← i+1

end while
return s
function SEARCH(l,u)

m← b(l +u)/2c
if u− l ≤ 1 then

if SPROB(m)≥ p then
return m

else
if SPROB(m+1)≥ p then

return m+1
end if

end if
return 0

end if
if SPROB(m)≥ p then

return SEARCH(l,m)
else

return SEARCH(m,u)
end if

end function

Biden and Trump, we scaled the round size estimates by the
ratio of total ballots cast to the number of valid ballots in the
contest cast for either Biden or Trump. Finally, we computed
the expected number of distinct ballots [19]. We used the
approach for states with margin larger than 0.01. For the three
states with smaller margin (Arizona, Georgia, Wisconsin) we
approximated round size by estimating the binomial as a
gaussian.

The table below compares end-of-round (EoR) BRAVO,
selection-ordered-ballots (SB) BRAVO and MINERVA First-
Round Sizes (in distinct ballots) for Statewide 2020 US Presi-
dential Contests, for a stopping probability of 0.9.

State Margin EoR BRAVO SB BRAVO MINERVA

Ballots Ballots

Alabama 0.2582 217 149 116

Alaska 0.1052 1359 893 669

Arizona 0.0031 1,196,732 - 640,652

Arkansas 0.2842 182 124 91

California 0.2982 164 113 81

Colorado 0.1388 774 516 384

Connecticut 0.2039 351 240 174

Delaware 0.1925 387 268 199

DistrictOfColumbia 0.8893 14 10 8

Florida 0.0339 12,530 8,442 6,070

Georgia 0.0024 1,993,171 - 1,084,953

Hawaii 0.3007 163 110 82

Idaho 0.3175 145 99 78

Illinois 0.1732 483 331 245

Indiana 0.1639 549 370 273

Iowa 0.0837 2,084 1,410 1,037

Kansas 0.1499 644 441 321

Kentucky 0.2640 204 142 105

Louisiana 0.1893 410 276 200

Maine 0.0934 1,706 1,133 854

Maryland 0.3406 118 85 66

Massachusetts 0.3423 185 66

Michigan 0.0283 18,161 12,279 8,807

Minnesota 0.0728 2,779 1,864 1,350

Mississippi 0.1677 526 352 263

Missouri 0.1567 587 404 294

Montana 0.1679 523 352 264

Nebraska 0.1957 381 259 191

Nevada 0.0245 24,311 - 11,783

NewHampshire 0.0750 2,600 1,757 1,283

NewJersey 0.1614 555 381 278

NewMexico 0.1104 1,212 811 600

NewYork 0.2343 260 182 138

NorthCarolina 0.0137 76,857 - 37,303

NorthDakota 0.3443 117 83 65

Ohio 0.0815 2,181 1,485 1,080

Oklahoma 0.3388 125 85 66

Oregon 0.1661 534 362 268

Pennsylvania 0.0118 103,559 - 50,092

RhodeIsland 0.2120 319 222 164

SouthCarolina 0.1185 1,043 705 516

SouthDakota 0.2687 192 137 106

Tennessee 0.2366 259 178 136

Texas 0.0566 4,520 3,071 2,221

Utah 0.2139 327 218 165

Vermont 0.3660 109 74 58

Virginia 0.1031 1,368 932 677

Washington 0.1985 382 253 193

WestVirginia 0.3960 90 64 50

Wisconsin 0.0064 338,586 - 167,438

Wyoming 0.4496 67 49 37

Table 5: Comparison of Estimated Round Sizes

3076    30th USENIX Security Symposium USENIX Association


	Introduction
	Election Tabulation Audits
	The Problem
	Our Contributions
	Organization

	Background
	The Model
	Related Work

	Bravo Theory vs Practice
	Minerva
	End-of-round Bravo
	An Introduction to Minerva
	Computing Risks and Stopping Probabilities for Multiple-Round Audits
	The Minerva audit

	Minerva properties
	Notation and Definitions
	Minerva is risk-limiting
	Properties of B2 version of Minerva
	Efficiency

	Applications
	Montgomery County OH audit
	Conclusion
	Acknowledgements
	Proofs
	Experimental Results
	B2 BRAVO Percentile Verification
	Determining First Round Sizes




