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Abstract. This short paper provides a general form for a polling audit
that is both Bayesian and risk-limiting: the Bayesian Risk-Limiting
(Polling) Audit, which enables the use of a Bayesian approach to explore
more efficient Risk-Limiting Audits. A numerical example illustrates the
implications to practice.
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1 Introduction

The framework of risk-limiting audits (RLAs), as described by Lindeman and
Stark [1], formalizes a rigorous approach to election verification. The purpose of
an audit is to require a full hand count if the outcome is wrong; the risk is the
rate at which it fails to do so, and depends on the (unknown) underlying true
election tally. An RLA is an audit that guarantees that the worst-case risk—the
largest value of the risk over all possible true election tallies—is smaller than a
pre-specified bound.

The Bayesian audit, as described by Rivest and Shen [5], begins with an
assumed prior probability distribution over the election tally. It guarantees a pre-
specified upper bound on the upset probability, which is the weighted average of
risk values, each risk value corresponding to an election tally inconsistent with
the announced outcome and weighted by the corresponding prior probability.
As an average of risks, the upset probability could be considerably smaller than
the worst-case risk; limiting it does not, in general, limit the worst-case risk.
The Bayesian framework is promising as a means of designing efficient audits
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(requiring a small average sample size, we make this more precise later), and an
important question is whether we can bound the worst-case (maximum) risk of
a Bayesian audit given the upper bound on its upset probability.

The BRAVO audit [1] can be reduced to a comparison test as described in the
classical work of Wald [7]. The CLIP audit of Rivest [4] is another RLA which
may also be reduced to such a comparison, though the values are computed
using simulations1. Before this work, it was not known if Bayesian audits could
be reduced to comparison tests; they are generally computed using Pólya urn
simulations.

In this short paper, while restricting ourselves to polling audits of two-
candidate plurality elections with no invalid ballots, we state the following results
without proof:

1. We define a class of Bayesian audits that are most efficient RLAs. Most effi-
cient RLAs are those that use the smallest expected number of ballots given
either hypothesis: a correct election outcome or an incorrect one, if the elec-
tion is drawn from the assumed prior. The expectation is computed over
the randomness of the tally and the sampling process. We describe how the
BRAVO audit may be viewed as a special case of a generalized Bayesian RLA,
based on a more general version of the Bayesian audit defined by Rivest and
Shen.

2. The Bayesian audit can be reduced to a simple comparison test between the
number of votes for the winner in the audit sample and two pre-computed
values for this sample size (we denote this size n):

– a minimum number of votes for the winner, kmin(n), above which the
election outcome is declared correct, and

– a maximum number of votes for the winner, kmax(n), below which the
audit proceeds to a hand count.

We present an illustrative example of kmin(n) values computed for various
audits. Proofs of results 1 and 2 above and more illustrative examples may be
found in [6].

1.1 Organization

This paper is organized as follows. Section 2 describes the model and establishes
most of the notation. Section 3 describes RLAs [1] and Bayesian audits [5]. Our
contributions are to be found in Sect. 4, which states our theoretical results, and
Sect. 5, which presents the illustrative example. Section 6 concludes.

2 The Model

We consider a plurality election with two candidates, N voters and no invalid
ballots. Once the votes are cast, either the true outcome of the election is a tie, or
1 Philip Stark has mentioned a CLIP-like audit which does not use simulations as

work in progress.
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there is a well-defined true winner. In the worst case, however, unless all votes
are manually counted, the true winner is generally unknown. In the Bayesian
approach, the true winner is modeled as a random variable, which we denote W .
We further denote by w an instance of W , by wa and �a the announced winner
and loser respectively and by x the (true, unknown) number of votes obtained
by wa. Thus wa = w if and only if x > N

2 .
A polling audit will estimate whether wa is the true winner. Consider a

sample of n votes drawn uniformly at random: v1, v2, ..., vn, n < N , vi ∈
{wa, �a}. The sample forms the signal or the observation; the corresponding
random variable is denoted Sn ∈ {wa, �a}n, the specific value sn = [v1, v2, ..., vn].
Let kn denote the number of votes for wa in the sample; then n − kn votes are
for �a.

The audit computes a binary-valued estimate of the true winner from sn:

ŵn : {wa, �a}n → {wa, �a}
We will refer to the function ŵn as the estimator and ŵn(sn) as the estimate.
The audit uses an error measure to compute the quality of the estimate.

– If ŵn(sn) = wa and the error measure is acceptable we are done (the audit
stops) and declare that the election outcome was correctly announced.

– If ŵn(sn) = �a and the error measure is acceptable we stop drawing votes
and proceed to perform a complete hand count.

– If the error measure is not acceptable we draw more votes to improve the
estimate.

Thus, when we use the term the audit stops, we mean that the audit verified the
election outcome. When we say the audit proceeds to a hand count, we mean
that the tentative estimate is ŵn(sn) = �a, we stop drawing samples and proceed
to a full hand count.

In computing the audit we can make two types of errors:

1. Miss: A miss occurs when the announced outcome is incorrect, w �= wa, but
the estimator misses this, ŵn(sn) = wa, the error measure is small enough
and the audit stops. We denote by PM the probability of a miss—given that
the announced outcome is incorrect, the probability that the audit will miss
this:

PM = Pr[audit stops || w �= wa]

PM is the risk in risk limiting audits. If the audit is viewed as a statistical
test, with the null hypothesis being w = �a, when it stops, PM is the Type I
error.

2. Unnecessary Hand Count: Similarly, if w = wa, but ŵn(sn) = �a, acceptance
of the estimate would lead to an unnecessary hand count. We denote the
probability of an unnecessary hand count by PU :

PU = Pr[hand count || w = wa]

If the audit is viewed as a statistical test, with the null hypothesis being
w = �a, when the audit stops, PU is the Type II error.
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3 Defining the Audit

In this section, we describe two types of audits. We do not attempt to introduce
any new ideas, but try to faithfully represent the existing literature.

3.1 Risk-Limiting Audits (RLAs) [1]

A risk-limiting audit (RLA) with risk limit α—as described by, for example,
Lindeman and Stark [1]—is one for which the risk is smaller than α for all
possible (unknown) true tallies in the election (or—equivalently for the two-
candidate election—all possible values of x). For convenience when we compare
audits, we refer to this audit as an α-RLA.

An example of an α-RLA for a two-candidate election with no invalid ballots
and where ballots are drawn with replacement is the following, which is an
instance of Wald’s Sequential Probability Ratio Test (SPRT):

ŵn =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

wa
pkn (1−p)n−kn

( 1
2 )

n > 1−β
α

�a
pkn (1−p)n−kn

( 1
2 )

n < β
1−α

undetermined (draw more samples) else

(1)

We denote the above as the (α, β, p)-SPRT RLA. Note that a similar expres-
sion may be obtained for sampling without replacement, see, for example, [3].

Proposition:
When the only possible values of the true vote count, x, are pN when wa wins,
and N

2 otherwise, the (α, β, p) SPRT RLA has PM < α and PU < β, and is a
most efficient test achieving these bounds.

Proof: This follows from Wald’s argument [7].

Note that, in this case, there is no explicitly-assumed prior over the election
tally; hence the term “most efficient test” here means one that requires the
smallest expected number of ballots given either hypothesis: a correct election
outcome or an incorrect one, if the tallies are pN when wa wins and N

2 otherwise.
The expectation is computed over the sampling process. While the test we denote
the (α, β, p)-SPRT RLA is believed to be an RLA, we are not aware of this having
been proven in the literature.

Lindeman and Stark recommend the use of the (α, β, p)-SPRT RLA with
p = s − t where s is the fractional vote count announced for the winner and t is
a tolerance used to improve the performance of the audit when the vote tallies
are not accurate, but the announced outcome is correct.

The BRAVO audit as described in [2] is the (α, 0, p)-SPRT RLA which we
denote the (α, p)-BRAVO audit. Note that β = 0, and p can be modified to be
slightly smaller than the announced fractional vote count as described in [1].
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Other RLAs include the CLIP audit [4] which may be expressed as a simple
comparison test between the number of votes for the winner and a pre-computed
value that depends on sample size.

3.2 Bayesian Audits [5]

Bayesian audits, defined by Rivest and Shen [5], assume knowledge of a prior
probability distribution on x; we denote this distribution by fX . Given the sam-
ple sn, W inherits a posterior distribution, Pr[W | Sn = sn], also known as the a
posteriori probability of W . The Bayesian audit estimates the winning candidate
that maximizes this probability (that is, the candidate for whom this value is
largest), with the constraint that the probability of estimation error is smaller
than γ, a pre-determined quantity, 0 < γ < 1

2 . The election outcome is correct
if the estimated winning candidate is wa and the error smaller than γ. In this
case, the estimation error is also termed the upset probability.

The (computational) Bayesian Audit assumes the audit draws votes without
replacement and uses knowledge of fX to simulate the distribution on the unex-
amined votes, conditional on sn, using Pólya urns. The estimated candidate is
the one with the largest number of wins in the simulations, provided the fraction
of wins is greater than 1 − γ.

We study the general Bayesian audit and do not restrict ourselves to Pólya
urn simulations or drawing samples without replacement. We will refer to the
general Bayesian audit as the (γ, fX)-Bayesian audit and specify whether ballots
are drawn with or without replacement. Additionally, we assume that Pr[w =
wa] = Pr[w = �a] and denote the probability of error by γ.

4 Our Main Results

In this section we state our main results without proofs. For proofs, see [6].

4.1 Is BRAVO a Bayesian Audit?

Corollary 1. The (γ, γ, p)-SPRT RLA with/without replacement is the (γ, fX)-
Bayesian audit with/without replacement for

fX =
1
2
δx,N2

+
1
2
δx,pN

Note that the (α, p)-BRAVO audit may not be represented as a special case
of the above because the Bayesian audit as defined by Rivest and Shen requires
α = β. However, a more general definition of the Bayesian audit, where the prob-
ability of erring when the outcome is correct is zero and not equal to the prob-
ability of erring when the outcome is wrong, would correspond to the BRAVO
audit for fX as above.
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4.2 The Bayesian Audit Is a Comparison Test

We observe (without proof here) that the decision rule for the Bayesian audit is
a simple comparison test. In fact, we observe that the SPRT RLA and Bayesian
audits may be defined in the form:

ŵn(sn) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

wa kn ≥ kmin(n)

�a kn ≤ kmax(n)

undetermined else
(draw more samples)

(2)

where kmin(n) and kmax(n) are determined by the specific audit. This follows
from the fact that the likelihood ratio is monotone increasing with kn for a fixed
n.

4.3 Bayesian RLAs

Given a prior fX of the vote count for election E, define the risk-maximizing
distribution corresponding to fX (denoted f∗

X) as follows.

f∗
X =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

fX(x) x > N
2

1
2 x = N

2

0 else

(3)

Note that f∗
X is a valid distribution for the vote count of an election.

Theorem 1. The (α, f∗
X)-Bayesian Audit is an α-RLA with PU < α for election

E with prior fX and is a most efficient audit achieving PM < α and PU < α
for the prior f∗

X .

The above may be used to show that the (α, α, p)-SPRT RLA is an RLA.
Additionally, a similar approach may be used to show that the (α, β, p)-SPRT
RLA is an RLA. We are not aware of a proof of this in the literature on election
audits. Note that, as mentioned in Sect. 1, most efficient RLAs are those that
use the smallest expected number of ballots given either hypothesis: a correct
election outcome or an incorrect one, if the election is drawn from the assumed
prior. The expectation is computed over the randomness of the tally and the
sampling process.

5 An Illustrative Example

We computed values of kmin(n) for an election with N = 100 ballots cast, two
candidates, no invalid ballots, α = 0.001 and audit sample sizes (i.e. values of
n) from 9–75.
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We compared the following audits:

1. SPRT RLA with replacement, p = 0.75. That is, if the declared winner has
won the election, we assume it is with a fractional vote count of 0.75.

2. SPRT RLA without replacement, p = 0.75.
3. Bayesian RLA corresponding to the uniform distribution. That is, the prior

is uniform over all winning tallies, and the only possibility for w �= wa is a
fractional vote of 0.5 (a tie), with probability 0.5. The fractional vote of 0.75
in the SPRT RLA was chosen because the center of mass of the Bayesian
prior when w = wa is a fractional vote of 0.75.

4. The Bayesian audit corresponding to the uniform distribution.

Figure 1 plots the values of kmin(n) for samples sizes from 9 through 75. Note
that each of (2) and (3) is the most efficient audit for its prior (when viewed as
a Bayesian audit), so not much can be made of the number of samples needed.
Note further that (1) is an audit with replacement and hence expected to require
more samples than (2), which has the same assumed prior. Finally, note that (4)
requires the fewest samples as expected because its upset probability is α, and
it is not risk-limited. That is, its error bound is an average error bound, and not
a worst-case one.

6 Conclusions and Future Work

We describe a risk-limiting Bayesian polling audit for two-candidate elections
and describe how a Bayesian polling audit for two-candidate elections is a simple
comparison test between the number of votes for the announced winner in a
sample and a pre-computed value for that sample size. Open questions include
the application of this model to more complex elections.
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